
Security Assessment Report

PepeEvolutionsToken

9 Feb 2025

This security assessment report was prepared by
SolidityScan.com, a cloud-based Smart Contract Scanner.

SolidityScan A security assessment report

https://solidityscan.com/
https://www.credshields.com/

Table of Contents

01 Vulnerability Classification and Severity

02 Executive Summary

03 Threat Summary

04 Findings Summary

05 Vulnerability Details

APPROVE FRONT-RUNNING ATTACK

USE OWNABLE2STEP

IF-STATEMENT REFACTORING

AVOID RE-STORING VALUES

CHEAPER INEQUALITIES IN IF()

DEFINE CONSTRUCTOR AS PAYABLE

FUNCTIONS CAN BE IN-LINED

INTERNAL FUNCTIONS NEVER USED

OPTIMIZING ADDRESS ID MAPPING

STORAGE VARIABLE CACHING IN MEMORY

Page 1 SolidityScan A security assessment report

01. Vulnerability Classification and Severity

Description

To enhance navigability, the document is organized in descending order of severity for easy reference. Issues are categorized
as Fixed, Pending Fix, or Won't Fix, indicating their current status. Won't Fix denotes that the team is
aware of the issue but has chosen not to resolve it. Issues labeled as Pending Fix state that the bug is yet to be
resolved. Additionally, each issue's severity is assessed based on the risk of exploitation or the potential for other unexpected
or unsafe behavior.

Critical

The issue affects the contract in such a way that funds
may be lost, allocated incorrectly, or otherwise result in a
significant loss.

High

High-severity vulnerabilities pose a significant risk to both
the Smart Contract and the organization. They can lead
to user fund losses, may have conditional requirements,
and are challenging to exploit.

Medium

The issue affects the ability of the contract to operate in
a way that doesn’t significantly hinder its behavior.

Low

The issue has minimal impact on the contract’s ability to
operate.

Informational

The issue does not affect the contract's operational
capability but is considered good practice to address.

Gas

This category deals with optimizing code and refactoring
to conserve gas.

Page 2 SolidityScan A security assessment report

02. Executive Summary

PepeEvolutionsToken

0xB1EfA3A2fE00475228F816811F75aa0C5642B170
https://bscscan.com/address/0xB1EfA3A2fE00475228F816811F…

Language

Solidity

Audit Methodology

Static Scanning

Contract Type

-

Website

-

Publishers/Owner Name

-

Organization

-

Contact Email

-

Security Score is GREAT
The SolidityScan score is calculated based on lines of code and weights assigned to
each issue depending on the severity and confidence. To improve your score, view
the detailed result and leverage the remediation solutions provided.

This report has been prepared for PepeEvolutionsToken using SolidityScan to scan and discover vulnerabilities and safe
coding practices in their smart contract including the libraries used by the contract that are not officially recognized. The
SolidityScan tool runs a comprehensive static analysis on the Solidity code and finds vulnerabilities ranging from minor gas
optimizations to major vulnerabilities leading to the loss of funds. The coverage scope pays attention to all the informational
and critical vulnerabilities with over (100+) modules. The scanning and auditing process covers the following areas:

Various common and uncommon attack vectors will be investigated to ensure that the smart contracts are secure from
malicious actors. The scanner modules find and flag issues related to Gas optimizations that help in reducing the overall Gas
cost It scans and evaluates the codebase against industry best practices and standards to ensure compliance It makes sure
that the officially recognized libraries used in the code are secure and up to date.

The SolidityScan Team recommends running regular audit scans to identify any vulnerabilities that are introduced after
PepeEvolutionsToken introduces new features or refactors the code.

95.53

Page 3 SolidityScan A security assessment report

https://bscscan.com/address/0xB1EfA3A2fE00475228F816811F75aa0C5642B170

03. Threat Summary

Threat Score

LOW RISK

86.21/100

THREAT SUMMARY
Your smart contract has been assessed and assigned a Low Risk

threat score. The score indicates the likelihood of risk associated with
the contract code.

Contract’s source code is verified.

Source code verification provides transparency for users interacting with smart contracts. Block explorers
validate the compiled code with the one on the blockchain. This also gives users a chance to audit the
contracts, ensuring that the deployed code matches the intended functionality and minimizing the risk of
malicious or erroneous contracts.

The contract cannot mint new tokens.

Minting functions are often utilized to generate new tokens, which can be allocated to specific addresses,
such as user wallets or the contract owner's wallet. This feature is commonly employed in various
decentralized finance (DeFi) and non-fungible token (NFT) projects to facilitate token issuance and
distribution. The Presence of Minting Function module is designed to quickly identify the presence and
implementation of minting functions in a smart contract. Mint functions play a crucial role in creating new
tokens and transferring them to the designated user's or owner's wallet. This process significantly
contributes to increasing the overall circulation of the tokens within the ecosystem.

The tokens cannot be burned in this contract.

The token contract incorporates a burn function that enables the intentional reduction of token amounts,
consequently diminishing the total supply. The execution of this burn function contributes to the creation
of scarcity within the token ecosystem, as the overall availability of the token decreases.

SEVERE LOW

Page 4 SolidityScan A security assessment report

The contract cannot be compiled with a more recent Solidity version

The contract should be written using the latest Solidity pragma version as it comes with numerous bug
fixes. Utilizing an outdated version exposes the contract to vulnerabilities associated with known issues
that have been addressed in subsequent updates. Therefore, it is essential to stay current with the latest
Solidity version to ensure the robustness and security of the contract against potential vulnerabilities.

This is not a proxy-based upgradable contract.

The Proxy-Based Upgradable Contract module is dedicated to identifying the presence of upgradeable
contracts or proxy patterns within a smart contract. The utilization of upgradeable contracts or proxy
patterns enables contract owners to make dynamic changes to various aspects, including functions, token
circulation, and distribution, without requiring a complete redeployment of the contract.

Owners cannot blacklist tokens or users.

This module is designed to identify whether the owner of a smart contract has the capability to blacklist
specific tokens or users. In a scenario where owners possess the authority to blacklist, all transactions
related to the blacklisted entities will be immediately halted. Ownership privileges that include the ability
to blacklist tokens or users can be a critical feature in certain use cases, providing the owner with control
over potential malicious activities, compliance issues, or other concerns. However, in situations where this
authority is abused or misapplied, it can lead to unintended consequences and user dissatisfaction.

Is ERC-20 token.

A token is expected to adhere to the established standards of the ERC-20 token specification,
encompassing the inclusion of all necessary functions with standardized names and arguments as defined
by the ERC-20 standard.

This is not a Pausable contract.

Pausable contracts refer to contracts that can be intentionally halted by their owners, temporarily
preventing token holders from engaging in buying or selling activities. This pause mechanism allows
contract owners to exert control over the token's functionality, introducing a temporary suspension in
trading activities for various reasons such as security concerns, updates, or regulatory compliance
adjustments.

Page 5 SolidityScan A security assessment report

Critical functions that add, update, or delete owner/admin addresses are not detected.

A smart contract within the Web3 ecosystem that incorporates critical administrative functions can
potentially compromise the transparency and intended objectives of the contract. It is imperative to
conduct a thorough examination of these functions, especially in the realm of Web3 smart contracts.
Minimizing administrative functions in a token contract within the Web3 framework can significantly
reduce the likelihood of complications and enhance overall efficiency and clarity.

The contract cannot be self-destructed by owners.

The SELFDESTRUCT opcode is a critical operation in Ethereum smart contracts, allowing a contract to
autonomously terminate itself. When invoked, this opcode deallocates the contract, freeing up storage and
computational resources on the Ethereum blockchain. Notably, the remaining Ether in the contract is sent
to a specified address, ensuring a responsible handling of funds.

The contract is vulnerable to ERC-20 approve Race condition vulnerability.

The ERC-20 race condition arises when two or more transactions attempt to interact with the same ERC-
20 token contract concurrently. This scenario can result in conflicts and unexpected behavior due to the
non-atomic nature of certain operations in the contract. Atomicity refers to the concept that an operation
is indivisible and occurs as a single, uninterruptible unit.

The contract's owner was not found.

Renounced ownership indicates that the contract is truly decentralized, as the owner has relinquished
control, ensuring that the contract's functionality and rules cannot be altered by administrators or any
central authority.

No addresses contain more than 5% of circulating token supply.

Users with token balances exceeding 5% of the circulating token supply are critical to monitor, as their
actions can significantly influence the token's price and ecosystem. Proper token distribution helps
maintain a healthy market by preventing concentration of power and promoting fair participation.

Page 6 SolidityScan A security assessment report

The contracts are using functions that can only be called by the owners.

The Overpowered Owners module is dedicated to identifying situations where contract owners are
endowed with excessive privileges through critical functions. Granting too many privileges to owners,
especially via critical functions, might pose a significant risk to users' funds if the owners are compromised
or if a rug-pulling attack occurs. In the context of smart contracts, owners often have access to critical
functions that can impact the contract's functionality, token distribution, or other essential aspects. While
providing owners with necessary permissions is crucial for contract management, it is equally important to
avoid overempowering owners to mitigate potential risks.

The contract does not have a cooldown feature.

Cooldown functions, a crucial aspect in the smart contract landscape, are employed to temporarily
suspend trading activities or other contract workflows. The mechanism introduces a time-based delay,
effectively preventing users from repeatedly executing transactions or engaging in rapid buying and
selling of tokens. Cooldown functions are used to halt trading or other contract workflows for a certain
amount of time so as to prevent users from repeatedly executing transactions or buying and selling
tokens.

Owners cannot whitelist tokens or users.

This empowers the contract owner to selectively grant privileges to users, such as exemption from fees or
access to unique contract features.

Owners cannot set or update Fees in the contract.

In the context of smart contracts, fees are essential components that may be associated with various
functionalities, such as transactions, token transfers, or other specific actions. The ability for owners to set
or update fees is particularly valuable in scenarios where fee adjustments are needed to align with market
conditions, regulatory requirements, or project-specific considerations. The Owners Can Set or Update
Fees module focuses on identifying the capability within a smart contract for owners to establish or modify
fees. This feature allows contract owners to have control over the fee structure within the contract,
providing flexibility and adaptability to changing circumstances.

Page 7 SolidityScan A security assessment report

Hardcoded addresses were not found.

The inclusion of a fixed or hardcoded address within a smart contract has the potential to pose significant
challenges in the future, particularly concerning the contract's adaptability and upgradability. This static
reference to an address may impede the seamless implementation of updates or modifications to the
contract, hindering its ability to evolve in response to changing requirements. Such rigidity may result in
complications and obstacles when attempting to enhance or alter the smart contract's functionality over
time.

The contract does not have any owner-controlled functions modifying token balances.

The Owners Updating Token Balance module is focused on identifying situations where a smart contract
has functions controlled by owners that allow them to update token balances for other users or the
contract. If a contract permits owners to manipulate token balances, it can have significant implications on
user holdings and overall contract integrity. In some scenarios, contracts may provide owners with
functions that enable the manual adjustment of token balances. While this feature can be legitimate for
specific use cases, such as token distribution or rewards, it also introduces potential risks. Allowing
owners to arbitrarily update token balances may lead to vulnerabilities, manipulation, or unintended
changes in the token ecosystem.

No such functions retrieving ownership were found.

The Function Retrieving Ownership module serves the purpose of swiftly and efficiently retrieving
ownership-related information within a smart contract. This functionality is vital for projects seeking to
access and manage ownership data seamlessly. Utilizing this module, developers can streamline the
process of obtaining ownership details, contributing to the effective administration of ownership-related
functions within the ecosystem.

Absence of Malicious Typecasting.

Malicious typecasting, particularly the conversion of uint160 values to addresses, is a tactic often used by
scammers to create deceptive addresses that can bypass standard detection mechanisms, facilitating
fraudulent activities.

Page 8 SolidityScan A security assessment report

No such functions having totalSupply function update were found.

A fixed supply token is critical when the token's value is tied to scarcity or when precise control over
inflation or deflation is required. Without a fixed supply, the contract could introduce unexpected inflation,
devalue the token, or erode trust in the token's consistency.

No such functions having gas abuse via malicious minting.

Gas abuse refers to patterns within smart contracts that manipulate gas consumption in ways that
unnecessarily increase transaction costs for users. This can occur through various mechanisms designed
to exploit gas inefficiencies or inflate gas usage, shifting the financial burden onto users without their
knowledge.

No hidden owner detected

The Hidden Owner check identifies whether there are any hidden owner roles within the contract. Hidden
ownership can allow unauthorized access and control over contract functions, which poses a risk to users
and stakeholders.

No such functions having addresses with special access.

Special permissions granted to non-owner addresses allow them to execute specific functions with
elevated access. This can introduce security risks, as these privileged addresses may perform critical
operations that impact the contract's state or user funds. If not properly managed or monitored, these
permissions could lead to unauthorized or malicious actions, compromising the contract's integrity.

The token is not a counterfeit token

The contract is found to have the token symbol identical to that of official tokens, thereby falling under the
category of counterfeit tokens. These counterfeit tokens can mislead users into believing they are
interacting with legitimate, well-known cryptocurrencies, potentially leading to financial losses and
damaging the reputation of the official token.

Absence of external call risk in critical functions.

This check identifies risks associated with external calls within critical functions. External calls can
introduce vulnerabilities such as unexpected state changes, or dependencies on external contracts, which
may compromise the integrity and reliability of the function’s execution.

Page 9 SolidityScan A security assessment report

Issue Type

ERC20 RACE CONDITION

Action Taken
Pending Fix

Description

The ERC-20 race condition arises when two or more transactions attempt to interact with the same
ERC-20 token contract concurrently. This scenario can result in conflicts and unexpected behavior
due to the non-atomic nature of certain operations in the contract. Atomicity refers to the concept
that an operation is indivisible and occurs as a single, uninterruptible unit.

Remediation

Implement locking mechanisms or state variables to ensure that only one transaction can modify the
token balances or allowances at a time, thereby preventing the race condition.

contract.sol L434 - L438

contract.sol L565 - L567

 */433

 function approve(address spender, uint256 value) public virtual returns (bool) {434

 address owner = _msgSender();435

 _approve(owner, spender, value);436

 return true;437

 }438

 439

 /**440

 */564

 function _approve(address owner, address spender, uint256 value) internal {565

 _approve(owner, spender, value, true);566

 }567

 568

 /**569

Page 10 SolidityScan A security assessment report

https://bscscan.com/address/0xB1EfA3A2fE00475228F816811F75aa0C5642B170#code
https://bscscan.com/address/0xB1EfA3A2fE00475228F816811F75aa0C5642B170#code

contract.sol L608 - L618

 */607

 function _spendAllowance(address owner, address spender, uint256 value) internal virtual {608

 uint256 currentAllowance = allowance(owner, spender);609

 if (currentAllowance < type(uint256).max) {610

 if (currentAllowance < value) {611

 revert ERC20InsufficientAllowance(spender, currentAllowance, value);612

 }613

 unchecked {614

 _approve(owner, spender, currentAllowance - value, false);615

 }616

 }617

 }618

}619

 620

Page 11 SolidityScan A security assessment report

https://bscscan.com/address/0xB1EfA3A2fE00475228F816811F75aa0C5642B170#code

Issue Type

OVERPOWERED OWNERS

Action Taken
Pending Fix

Description

The Overpowered Owners module is dedicated to identifying situations where contract owners are
endowed with excessive privileges through critical functions. Granting too many privileges to
owners, especially via critical functions, might pose a significant risk to users' funds if the owners
are compromised or if a rug-pulling attack occurs. In the context of smart contracts, owners often
have access to critical functions that can impact the contract's functionality, token distribution, or
other essential aspects. While providing owners with necessary permissions is crucial for contract
management, it is equally important to avoid overempowering owners to mitigate potential risks.

Remediation

Review and minimize the number of critical functions accessible to owners, ensuring that these functions
are necessary for contract management and do not pose undue risk to users' funds in the event of
compromise or misuse. Implement multi-signature or governance mechanisms for critical actions to
distribute authority and mitigate risk.

contract.sol L697 - L699

contract.sol L705 - L710

 */696

 function renounceOwnership() public virtual onlyOwner {697

 _transferOwnership(address(0));698

 }699

 700

 /**701

 */704

 function transferOwnership(address newOwner) public virtual onlyOwner {705

 if (newOwner == address(0)) {706

 revert OwnableInvalidOwner(address(0));707

 }708

 _transferOwnership(newOwner);709

 }710

 711

 /**712

Page 12 SolidityScan A security assessment report

https://bscscan.com/address/0xB1EfA3A2fE00475228F816811F75aa0C5642B170#code
https://bscscan.com/address/0xB1EfA3A2fE00475228F816811F75aa0C5642B170#code

04. Findings Summary

0xB1EfA3A2fE00475228F816811F75aa0C5642B170
BINANCE (Bsc Mainnet) View on Bscscan

Security Score

95.53/100
Scan duration

21 secs
Lines of code

626

This audit report has not been verified by the SolidityScan team. To learn more about our published reports.
click here

0

Crit

3

High

0

Med

1

Low

1

Info

13

Gas

18
Total Vulnerabilities

found

Page 13 SolidityScan A security assessment report

ACTION TAKEN

0
Fixed

0
False Positive

0
Won't Fix

18
Pending Fix

S. No. Severity Bug Type Instances Detection Method Status

H001 High APPROVE FRONT-RUNNING ATTACK 3 Automated Pending Fix

L001 Low USE OWNABLE2STEP 1 Automated Pending Fix

I001 Informational IF-STATEMENT REFACTORING 1 Automated Pending Fix

G001 Gas AVOID RE-STORING VALUES 2 Automated Pending Fix

G002 Gas CHEAPER INEQUALITIES IN IF() 1 Automated Pending Fix

G003 Gas DEFINE CONSTRUCTOR AS PAYABLE 1 Automated Pending Fix

G004 Gas FUNCTIONS CAN BE IN-LINED 3 Automated Pending Fix

G005 Gas INTERNAL FUNCTIONS NEVER USED 3 Automated Pending Fix

G006 Gas OPTIMIZING ADDRESS ID MAPPING 2 Automated Pending Fix

G007 Gas STORAGE VARIABLE CACHING IN MEMORY 2 Automated Pending Fix

Page 14 SolidityScan A security assessment report

05. Vulnerability Details

Issue Type

APPROVE FRONT-RUNNING ATTACK

S. No.

H001

Severity

High

Detection Method

Automated

Instances

3

Description

The method overrides the current allowance regardless of whether the spender already used it or not, so there is no
way to increase or decrease allowance by a certain value atomically unless the token owner is a smart contract, not
an account.
This can be abused by a token receiver when they try to withdraw certain tokens from the sender's account.
Meanwhile, if the sender decides to change the amount and sends another approve transaction, the receiver can n
otice this transaction before it's mined and can extract tokens from both transactions, therefore, ending up with toke
ns from both the transactions. This is a front-running attack affecting the ERC20 Approve function.

Bug ID File Location Line No. Action Taken

SSB_2246848_16 contract.sol L434 - L438 Pending Fix

contract.sol L434 - L438

 */433

 function approve(address spender, uint256 value) public virtual returns (bool) {434

 address owner = _msgSender();435

 _approve(owner, spender, value);436

 return true;437

 }438

 439

 /**440

Page 15 SolidityScan A security assessment report

https://bscscan.com/address/0xB1EfA3A2fE00475228F816811F75aa0C5642B170#code

Bug ID File Location Line No. Action Taken

SSB_2246848_17 contract.sol L565 - L567 Pending Fix

contract.sol L565 - L567

Bug ID File Location Line No. Action Taken

SSB_2246848_18 contract.sol L608 - L618 Pending Fix

contract.sol L608 - L618

 */564

 function _approve(address owner, address spender, uint256 value) internal {565

 _approve(owner, spender, value, true);566

 }567

 568

 /**569

 */607

 function _spendAllowance(address owner, address spender, uint256 value) internal virtu

al {

608

 uint256 currentAllowance = allowance(owner, spender);609

 if (currentAllowance < type(uint256).max) {610

 if (currentAllowance < value) {611

 revert ERC20InsufficientAllowance(spender, currentAllowance, value);612

 }613

 unchecked {614

 _approve(owner, spender, currentAllowance - value, false);615

 }616

 }617

 }618

}619

 620

Page 16 SolidityScan A security assessment report

https://bscscan.com/address/0xB1EfA3A2fE00475228F816811F75aa0C5642B170#code
https://bscscan.com/address/0xB1EfA3A2fE00475228F816811F75aa0C5642B170#code

Issue Type

USE OWNABLE2STEP

S. No.

L001

Severity

Low

Detection Method

Automated

Instances

1

Description

Ownable2Step is safer than Ownable for smart contracts because the owner cannot accidentally transfer the ow
nership to a mistyped address. Rather than directly transferring to the new owner, the transfer only completes when
the new owner accepts ownership.

Bug ID File Location Line No. Action Taken

SSB_2246848_9 contract.sol L725 - L725 Pending Fix

contract.sol L725 - L725

 724

contract PepeEvolutionsToken is ERC20,Ownable {725

 constructor(address initialOwner) 726

 ERC20("Pepe Evolutions", "PEPEV") Ownable(initialOwner) 727

Page 17 SolidityScan A security assessment report

https://bscscan.com/address/0xB1EfA3A2fE00475228F816811F75aa0C5642B170#code

Issue Type

IF-STATEMENT REFACTORING

S. No.

I001

Severity

Informational

Detection Method

Automated

Instances

1

Description

In Solidity, we aim to write clear, efficient code that is both easy to understand and maintain. If statements can be co
nverted to ternary operators. While using ternary operators instead of if/else statements can sometimes lead to more
concise code, it's crucial to understand the trade-offs involved.

Bug ID File Location Line No. Action Taken

SSB_2246848_3 contract.sol L505 - L515 Pending Fix

contract.sol L505 - L515

 504

 if (to == address(0)) {505

 unchecked {506

 // Overflow not possible: value <= totalSupply or value <= fromBalance <=

totalSupply.

507

 _totalSupply -= value;508

 }509

 } else {510

 unchecked {511

 // Overflow not possible: balance + value is at most totalSupply, which we

know fits into a uint256.

512

 _balances[to] += value;513

 }514

 }515

 516

 emit Transfer(from, to, value);517

Page 18 SolidityScan A security assessment report

https://bscscan.com/address/0xB1EfA3A2fE00475228F816811F75aa0C5642B170#code

Issue Type

AVOID RE-STORING VALUES

S. No.

G001

Severity

Gas

Detection Method

Automated

Instances

2

Description

The function is found to be allowing re-storing the value in the contract's state variable even when the old value is eq
ual to the new value. This practice results in unnecessary gas consumption due to the Gsreset operation (2900 ga
s), which could be avoided. If the old value and the new value are the same, not updating the storage would avoid thi
s cost and could instead incur a Gcoldsload (2100 gas) or a Gwarmaccess (100 gas), potentially saving gas.

Bug ID File Location Line No. Action Taken

SSB_2246848_10 contract.sol L587 - L598 Pending Fix

contract.sol L587 - L598

 */586

 function _approve(address owner, address spender, uint256 value, bool emitEvent) inter

nal virtual {

587

 if (owner == address(0)) {588

 revert ERC20InvalidApprover(address(0));589

 }590

 if (spender == address(0)) {591

 revert ERC20InvalidSpender(address(0));592

 }593

 _allowances[owner][spender] = value;594

 if (emitEvent) {595

 emit Approval(owner, spender, value);596

 }597

 }598

 599

 /**600

Page 19 SolidityScan A security assessment report

https://bscscan.com/address/0xB1EfA3A2fE00475228F816811F75aa0C5642B170#code

Bug ID File Location Line No. Action Taken

SSB_2246848_11 contract.sol L716 - L720 Pending Fix

contract.sol L716 - L720

 */715

 function _transferOwnership(address newOwner) internal virtual {716

 address oldOwner = _owner;717

 _owner = newOwner;718

 emit OwnershipTransferred(oldOwner, newOwner);719

 }720

}721

 722

Page 20 SolidityScan A security assessment report

https://bscscan.com/address/0xB1EfA3A2fE00475228F816811F75aa0C5642B170#code

Issue Type

CHEAPER INEQUALITIES IN IF()

S. No.

G002

Severity

Gas

Detection Method

Automated

Instances

1

Description

The contract was found to be doing comparisons using inequalities inside the if statement.
When inside the if statements, non-strict inequalities (>=, <=) are usually cheaper than the strict equalities
(>, <).

Bug ID File Location Line No. Action Taken

SSB_2246848_15 contract.sol L610 - L610 Pending Fix

contract.sol L610 - L610

 uint256 currentAllowance = allowance(owner, spender);609

 if (currentAllowance < type(uint256).max) {610

 if (currentAllowance < value) {611

 revert ERC20InsufficientAllowance(spender, currentAllowance, value);612

Page 21 SolidityScan A security assessment report

https://bscscan.com/address/0xB1EfA3A2fE00475228F816811F75aa0C5642B170#code

Issue Type

DEFINE CONSTRUCTOR AS PAYABLE

S. No.

G003

Severity

Gas

Detection Method

Automated

Instances

1

Description

Developers can save around 10 opcodes and some gas if the constructors are defined as payable.
However, it should be noted that it comes with risks because payable constructors can accept ETH during deployme
nt.

Bug ID File Location Line No. Action Taken

SSB_2246848_7 contract.sol L726 - L730 Pending Fix

contract.sol L726 - L730

contract PepeEvolutionsToken is ERC20,Ownable {725

 constructor(address initialOwner) 726

 ERC20("Pepe Evolutions", "PEPEV") Ownable(initialOwner) 727

 {728

 _mint(initialOwner,8e9*1e18);729

 }730

}731

Page 22 SolidityScan A security assessment report

https://bscscan.com/address/0xB1EfA3A2fE00475228F816811F75aa0C5642B170#code

Issue Type

FUNCTIONS CAN BE IN-LINED

S. No.

G004

Severity

Gas

Detection Method

Automated

Instances

3

Description

The internal function was called only once throughout the contract. Internal functions cost more gas due to additiona
l JUMP instructions and stack operations.

Bug ID File Location Line No. Action Taken

SSB_2246848_4 contract.sol L528 - L533 Pending Fix

contract.sol L528 - L533

 */527

 function _mint(address account, uint256 value) internal {528

 if (account == address(0)) {529

 revert ERC20InvalidReceiver(address(0));530

 }531

 _update(address(0), account, value);532

 }533

 534

 /**535

Page 23 SolidityScan A security assessment report

https://bscscan.com/address/0xB1EfA3A2fE00475228F816811F75aa0C5642B170#code

Bug ID File Location Line No. Action Taken

SSB_2246848_5 contract.sol L608 - L618 Pending Fix

contract.sol L608 - L618

Bug ID File Location Line No. Action Taken

SSB_2246848_6 contract.sol L684 - L688 Pending Fix

contract.sol L684 - L688

 */607

 function _spendAllowance(address owner, address spender, uint256 value) internal virtu

al {

608

 uint256 currentAllowance = allowance(owner, spender);609

 if (currentAllowance < type(uint256).max) {610

 if (currentAllowance < value) {611

 revert ERC20InsufficientAllowance(spender, currentAllowance, value);612

 }613

 unchecked {614

 _approve(owner, spender, currentAllowance - value, false);615

 }616

 }617

 }618

}619

 620

 */683

 function _checkOwner() internal view virtual {684

 if (owner() != _msgSender()) {685

 revert OwnableUnauthorizedAccount(_msgSender());686

 }687

 }688

 689

 /**690

Page 24 SolidityScan A security assessment report

https://bscscan.com/address/0xB1EfA3A2fE00475228F816811F75aa0C5642B170#code
https://bscscan.com/address/0xB1EfA3A2fE00475228F816811F75aa0C5642B170#code

Issue Type

INTERNAL FUNCTIONS NEVER USED

S. No.

G005

Severity

Gas

Detection Method

Automated

Instances

3

Description

The contract declared internal functions but was not using them in any of the functions or contracts.
Since internal functions can only be called from inside the contracts, it makes no sense to have them if they are not u
sed. This uses up gas and causes issues for auditors when understanding the contract logic.

Bug ID File Location Line No. Action Taken

SSB_2246848_12 contract.sol L134 - L136 Pending Fix

contract.sol L134 - L136

 133

 function _msgData() internal view virtual returns (bytes calldata) {134

 return msg.data;135

 }136

 137

 function _contextSuffixLength() internal view virtual returns (uint256) {138

Page 25 SolidityScan A security assessment report

https://bscscan.com/address/0xB1EfA3A2fE00475228F816811F75aa0C5642B170#code

Bug ID File Location Line No. Action Taken

SSB_2246848_13 contract.sol L138 - L140 Pending Fix

contract.sol L138 - L140

Bug ID File Location Line No. Action Taken

SSB_2246848_14 contract.sol L543 - L548 Pending Fix

contract.sol L543 - L548

 137

 function _contextSuffixLength() internal view virtual returns (uint256) {138

 return 0;139

 }140

}141

 142

 */542

 function _burn(address account, uint256 value) internal {543

 if (account == address(0)) {544

 revert ERC20InvalidSender(address(0));545

 }546

 _update(account, address(0), value);547

 }548

 549

 /**550

Page 26 SolidityScan A security assessment report

https://bscscan.com/address/0xB1EfA3A2fE00475228F816811F75aa0C5642B170#code
https://bscscan.com/address/0xB1EfA3A2fE00475228F816811F75aa0C5642B170#code

Issue Type

OPTIMIZING ADDRESS ID MAPPING

S. No.

G006

Severity

Gas

Detection Method

Automated

Instances

2

Description

Combining multiple address/ID mappings into a single mapping using a struct enhances storage efficiency, simplifies
code, and reduces gas costs, resulting in a more streamlined and cost-effective smart contract design.
It saves storage slot for the mapping and depending on the circumstances and sizes of types, it can avoid a Gsset (2
0000 gas) per mapping combined. Reads and subsequent writes can also be cheaper when a function requires both
values and they fit in the same storage slot.

Bug ID File Location Line No. Action Taken

SSB_2246848_1 contract.sol L337 - L337 Pending Fix

contract.sol L337 - L337

abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors {336

 mapping(address account => uint256) private _balances;337

 338

 mapping(address account => mapping(address spender => uint256)) private _allowances;339

Page 27 SolidityScan A security assessment report

https://bscscan.com/address/0xB1EfA3A2fE00475228F816811F75aa0C5642B170#code

Bug ID File Location Line No. Action Taken

SSB_2246848_2 contract.sol L339 - L339 Pending Fix

contract.sol L339 - L339

 338

 mapping(address account => mapping(address spender => uint256)) private _allowances;339

 340

 uint256 private _totalSupply;341

Page 28 SolidityScan A security assessment report

https://bscscan.com/address/0xB1EfA3A2fE00475228F816811F75aa0C5642B170#code

Issue Type

STORAGE VARIABLE CACHING IN MEMORY

S. No.

G007

Severity

Gas

Detection Method

Automated

Instances

2

Description

The contract is using the state variable multiple times in the function.
SLOADs are expensive (100 gas after the 1st one) compared to MLOAD / MSTORE (3 gas each).

Bug ID File Location Line No. Action Taken

SSB_2246848_8 contract.sol L490 - L518 Pending Fix

contract.sol L490 - L518

 */489

 function _update(address from, address to, uint256 value) internal virtual {490

 if (from == address(0)) {491

 // Overflow check required: The rest of the code assumes that totalSupply neve

r overflows

492

 _totalSupply += value;493

 } else {494

 uint256 fromBalance = _balances[from];495

 if (fromBalance < value) {496

 revert ERC20InsufficientBalance(from, fromBalance, value);497

 }498

 unchecked {499

 // Overflow not possible: value <= fromBalance <= totalSupply.500

 _balances[from] = fromBalance - value;501

 }502

 }503

 504

 if (to == address(0)) {505

 unchecked {506

 // Overflow not possible: value <= totalSupply or value <= fromBalance <=

totalSupply.

507

 _totalSupply -= value;508

 }509

 } else {510

Page 29 SolidityScan A security assessment report

https://bscscan.com/address/0xB1EfA3A2fE00475228F816811F75aa0C5642B170#code

contract.sol L490 - L518

Bug ID File Location Line No. Action Taken

SSB_2246848_8 contract.sol L490 - L518 Pending Fix

contract.sol L490 - L518

 }509

 } else {510

 unchecked {511

 // Overflow not possible: balance + value is at most totalSupply, which we know fi

ts into a uint256.

512

 _balances[to] += value;513

 }514

 }515

 516

 emit Transfer(from, to, value);517

 }518

 519

 */489

 function _update(address from, address to, uint256 value) internal virtual {490

 if (from == address(0)) {491

 // Overflow check required: The rest of the code assumes that totalSupply neve

r overflows

492

 _totalSupply += value;493

 } else {494

 uint256 fromBalance = _balances[from];495

 if (fromBalance < value) {496

 revert ERC20InsufficientBalance(from, fromBalance, value);497

 }498

 unchecked {499

 // Overflow not possible: value <= fromBalance <= totalSupply.500

 _balances[from] = fromBalance - value;501

 }502

 }503

 504

 if (to == address(0)) {505

 unchecked {506

 // Overflow not possible: value <= totalSupply or value <= fromBalance <=

totalSupply.

507

 _totalSupply -= value;508

 }509

 } else {510

 unchecked {511

Page 30 SolidityScan A security assessment report

https://bscscan.com/address/0xB1EfA3A2fE00475228F816811F75aa0C5642B170#code
https://bscscan.com/address/0xB1EfA3A2fE00475228F816811F75aa0C5642B170#code

06. Scan History

Critical High Medium Low Informational Gas

No Date Security Score Scan Overview

1. 2025-02-09 95.53 0 3 0 1 1 13

Page 31 SolidityScan A security assessment report

07. Disclaimer

The Reports neither endorse nor condemn any specific project or team, nor do they guarantee the security
of any specific project. The contents of this report do not, and should not be interpreted as having any
bearing on, the economics of tokens, token sales, or any other goods, services, or assets.

The security audit is not meant to replace functional testing done before a software release.

There is no warranty that all possible security issues of a particular smart contract(s) will be found by the
tool, i.e., It is not guaranteed that there will not be any further findings based solely on the results of this
evaluation.

Emerging technologies such as Smart Contracts and Solidity carry a high level of technical risk and
uncertainty. There is no warranty or representation made by this report to any Third Party in regards to the
quality of code, the business model or the proprietors of any such business model, or the legal compliance
of any business.

In no way should a third party use these reports to make any decisions about buying or selling a token,
product, service, or any other asset. It should be noted that this report is not investment advice, is not
intended to be relied on as investment advice, and has no endorsement of this project or team. It does not
serve as a guarantee as to the project's absolute security.

The assessment provided by SolidityScan is subject to dependencies and under continuing development.
You agree that your access and/or use, including but not limited to any services, reports, and materials, will
be at your sole risk on an as-is, where-is, and as-available basis. SolidityScan owes no duty to any third
party by virtue of publishing these Reports.

As one audit-based assessment cannot be considered comprehensive, we always recommend proceeding
with several independent manual audits including manual audit and a public bug bounty program to ensure
the security of the smart contracts.

Page 32 SolidityScan A security assessment report

